Difference between revisions of "Introduction to Quantum Mechanics/Chapter 1/Problems"

From Jonathan Gardner's Physics Notebook
Jump to: navigation, search
(1.14.b)
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
= 1.14 =
+
#REDIRECT [[Introduction to Quantum Mechanics/Chapter 1]]
 
 
== 1.14.a ==
 
 
 
To find A, all we have to do is normalize the wave function.
 
 
 
<math>
 
\begin{align}
 
1 &= \int_{-\infty}^{+\infty} \Psi^*\Psi\ dx \\
 
  &= \int_{-\infty}^{+\infty} A e^{-a[(mx^2/\hbar)-it]} A e^{-a[(mx^2/\hbar)+it]}\ dx \\
 
  &= \int_{-\infty}^{+\infty} A^2 e^{-2a(mx^2/\hbar)}\ dx \\
 
  &= A^2 \int_{-\infty}^{+\infty} e^{-2a(mx^2/\hbar)}\ dx & & \text{I had to look up how to solve this integral.}\\
 
 
 
\end{align}
 
</math>
 
 
 
How do you solve the integral above?
 
 
 
First, we substitute <math>b = {2am \over \hbar}</math> for simplicity. (These are all constants.)
 
 
 
Next, we note that this looks like the Gaussian integral. Although no definite integral exists, <math>\int_{-\infty}^{+\infty} e^-{x^2}\ dx = \sqrt{\pi}</math>.
 
 
 
Now all we have to do is eliminate the coefficient of x in the exponent. We can do this with integration by substitution, using <math>y^2 = b x^2,\ x = {y \over \sqrt{b}},\ dx = {1 \over \sqrt{b}}dy</math>
 
 
 
:<math>
 
\begin{align}
 
\int_{-\infty}^{+\infty} e^{-bx^2}\ dx
 
  &= \int_{-\infty}^{+\infty} {1 \over \sqrt{b}} e^{-y^2}\ dx \\
 
  &= \sqrt{{\pi \over b}}  \\
 
  &= \sqrt{{\pi \hbar \over 2am}} \\
 
1 &= A^2 \sqrt{{\pi \hbar \over 2am}} \\
 
A^2 &= \sqrt{{2am \over \pi \hbar}} \\
 
A &= \sqrt[4]{{2am \over \pi \hbar}} \\
 
\end{align}
 
</math>
 
 
 
== 1.14.b ==
 
 
 
The derivatives are not that hard.
 
 
 
<math>
 
\begin{align}
 
{\partial \over \partial t} \Psi
 
&= {\partial  \over \partial t}\left( A e^{-a[(mx^2/\hbar)+it]} \right ) \\
 
&= {\partial  \over \partial t}\left( A e^{-a(mx^2/\hbar)}e^{-ait} \right ) \\
 
&= A e^{-a(mx^2/\hbar)}{\partial  \over \partial t} e^{-ait} \\
 
&= A e^{-a(mx^2/\hbar)}(-ai) e^{-ait} \\
 
&= -ai A e^{-a[(mx^2/\hbar)+it]} \\
 
&= -ai \Psi \\
 
 
 
{\partial \over \partial x} \Psi
 
&= {\partial  \over \partial x}\left( A e^{-a[(mx^2/\hbar)+it]} \right ) \\
 
&= A e^{-ait} {\partial  \over \partial x} e^{-a(mx^2/\hbar)} \\
 
&= A e^{-ait} e^{-a(mx^2/\hbar)} {\partial  \over \partial x} [-a(mx^2/\hbar)] & & \text{Chain rule.} (f(g))' = f'(g)g';\ f = e^x;\ g = -a(mx^2/\hbar) \\
 
&= A e^{-ait} e^{-a(mx^2/\hbar)} [-a(2mx/\hbar)] \\
 
&= {-2 a mx \over \hbar} A  e^{-a[(mx^2/\hbar)+it]} \\
 
&= {-2 a mx \over \hbar} \Psi \\
 
 
 
{\partial^2 \over \partial x^2} \Psi &= {\partial  \over \partial x}{\partial \over \partial x} \Psi \\
 
&={\partial  \over \partial x}\left( {-2 a m x \over \hbar} \Psi \right) \\
 
&={\partial  \over \partial x}\left( {-2 a m x \over \hbar}\right) \Psi
 
+ {-2 a m x \over \hbar}{\partial  \over \partial x}\Psi \\
 
&= {-2 a m \over \hbar} \Psi + \left({-2 a m x \over \hbar}\right)^2 \Psi \\
 
&= {2 a m \over \hbar^2} (2 a m x^2 - \hbar) \Psi \\
 
\end{align}
 
</math>
 
 
 
 
 
Let's plug & chug.
 
 
 
<math>
 
\begin{align}
 
i\hbar {\partial \Psi \over \partial t}
 
  &= - {\hbar^2 \over 2m} {\partial^2 \Psi \over \partial x^2} + V \Psi \\
 
i\hbar (-ai \Psi)
 
  &= {\hbar^2 \over 2m}  {2 a m \over \hbar^2} (2 a m x^2 - \hbar) \Psi + V \Psi \\
 
a \hbar \Psi
 
  &= a (2 a m x^2 - \hbar) \Psi + V \Psi \\
 
a \hbar
 
  &= a (2 a m x^2 - \hbar) + V \\
 
V &= a \hbar - a (2 a m x^2 - \hbar) \\
 
  &= -2 a^2 m x^2
 
\end{align}
 
</math>
 
 
 
I'm pretty sure I've made several mistakes. I have to go over this carefully to see where. [[User:Jgardner|Jgardner]] 22:18, 3 May 2012 (MDT)
 
 
 
== 1.14.c ==
 
 
 
<math>
 
\begin{align}
 
\langle x \rangle
 
&= \int_{-\infty}^{+\infty} \Psi^* x \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} x \Psi^* \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} x A^2 e^{-2amx^2/\hbar}\ dx & & \text{Note that }x e^{-bx^2}\text{ is odd.} \\
 
&= 0 & & \text{Centered at the origin.} \\
 
 
 
\langle x^2 \rangle
 
&= \int_{-\infty}^{+\infty} \Psi^* x^2 \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} x^2 A^2 e^{-2amx^2/\hbar}\ dx \\
 
&= {A^2 \sqrt{\pi} \over \left(2am / \hbar\right)^{3/2}} \\
 
&= {\sqrt{2am \pi} \hbar^{3/2} \over \sqrt{\pi \hbar} (2am)^{3/2}} \\
 
&= {\hbar \over 2am} & & \text{Looks like it is spread out a bit.}\\
 
 
 
\langle p \rangle
 
&= \int_{-\infty}^{+\infty} \Psi^* (-i \hbar) {\partial \over \partial x} \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} \Psi^* (-i \hbar) {-2 a mx \over \hbar} \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} \Psi^* 2 a m x i \Psi\ dx \\
 
&= 2 a m i \int_{-\infty}^{+\infty} x \Psi^* \Psi\ dx & & \text{Odd function. (See above)} \\
 
&= 0 & & \text{It looks like it has an equal chance of going left or right.} \\
 
 
 
\langle p^2 \rangle
 
&= \int_{-\infty}^{+\infty} \Psi^* \left((-i \hbar) {\partial \over \partial x}\right)^2 \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} \Psi^* (-1) \hbar^2 {\partial^2 \over \partial x^2} \Psi\ dx \\
 
&= \int_{-\infty}^{+\infty} \Psi^* (-1) \hbar^2{2 a m \over \hbar^2} (2 a m x^2 - \hbar) \Psi\ dx \\
 
&= - 2 a m \int_{-\infty}^{+\infty} \Psi^* (2 a m x^2 - \hbar) \Psi\ dx \\
 
&= -2am \left(
 
  \int_{-\infty}^{+\infty} \Psi^* 2 a m x^2 \Psi\ dx -
 
  \int_{-\infty}^{+\infty} \Psi^* \hbar \Psi\ dx
 
\right) \\
 
&= -2am \left(
 
  2am \int_{-\infty}^{+\infty} x^2 \Psi^* \Psi\ dx -
 
  \hbar \int_{-\infty}^{+\infty} \Psi^* \Psi\ dx
 
\right) & & \text{We've already done these integrals, remember?} \\
 
&= -2am ( 2am \langle x^2 \rangle - \hbar) \\
 
&= -2am ( 2am {\hbar \over 2am} - \hbar) \\
 
&= -2am ( \hbar - \hbar) \\
 
&= 0 & & \text{That particle is really staying put!}\\
 
\end{align}
 
</math>
 
 
 
I have to admit, the result for <math>\langle p^2 \rangle</math> surprises me a great deal. I'd expect it to be non-zero, so that <math>\sigma_p</math> would be non-zero. I obviously made a mistake. [[User:Jgardner|Jgardner]] 01:01, 4 May 2012 (MDT)
 

Latest revision as of 14:24, 9 May 2012