Difference between revisions of "Introduction to Electrodynamics/Chapter 7/1"

From Jonathan Gardner's Physics Notebook
Jump to: navigation, search
(7.1.1 Ohm's Law)
(7.1.1 Ohm's Law)
Line 25: Line 25:
  
 
'''Ohm's Law''' is <math>\vec{J} = \sigma \vec{E}\;</math>, the current is proportional to the electric field.
 
'''Ohm's Law''' is <math>\vec{J} = \sigma \vec{E}\;</math>, the current is proportional to the electric field.
 
+
<br clear="all"/>
 
----
 
----
 +
{{YouTubeRight|rwohn6OXCUw}}
  
 
'''Example 1'''
 
'''Example 1'''
  
 +
A cylinder of constant cross-section has a potential put across the ends. How do the currents and potential relate?
 +
 +
First, we're going to assume that the electric field inside the cylinder is going to be constant. Example 3 explains why this is true.
 +
 +
Next, we relate current to the electric field:
 +
 +
TODO
 +
 +
<br clear="all"/>
 
----
 
----
 +
{{YouTubeRight|oj-9SQQWLKo}}
  
 
'''Example 2'''
 
'''Example 2'''
 
+
<br clear="all"/>
 +
----
 +
{{YouTubeRight|lyQymNCUMcY}}
 +
<br clear="all"/>
 +
----
 +
{{YouTubeRight|GSEtbW3DRjQ}}
 +
'''Example 3'''
 +
<br clear="all"/>
 
----
 
----
 
+
{{YouTubeRight|e_CDhwP41YE}}
 +
<br clear="all"/>
 
=== Problems ===
 
=== Problems ===
  

Revision as of 09:46, 19 October 2012

7.1 Electromotive Force

7.1.1 Ohm's Law

<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>zI6cQwA9UPY<html>" frameborder="0" allowfullscreen></iframe>
</html>

Electrostatics and magnetostatics apply whenever <math>\rho\;</math> and <math>\vec{J}\;</math> are independent of time.

With steady currents, the charge density <math>\rho\;</math> remains constant. So you can have both steady currents and static charges at the same time.

One exception: <math>\vec{E} = 0\;</math> in a conductor. If this were so, you could not have a steady current inside a conductor.

For most substances,

<math>\vec{J} = \sigma \vec{f}\;</math>
  • <math>\sigma\;</math> is the conductivity of the material.
    • <math>\rho = 1/\sigma\;</math> is the resistivity of the material.
    • Insulators have a very small conductivity / very large resistivity, typically factor of 1,000,000,000,000,000,000!
    • perfect conductors have infinite conductivity / zero resistivity.
  • <math>\vec{f}\;</math> is the force per unit charge.
    • Could be ANY force, even gravity, etc... "trained ants with tiny harnesses" (haha)
    • We care about electromagnetic forces: <math>\vec{f} = \vec{E} + \vec{v} \times \vec{B}\;</math>
    • Normally, the magnetic force is too small: <math>\vec{f} = \vec{E}\;</math>

Ohm's Law is <math>\vec{J} = \sigma \vec{E}\;</math>, the current is proportional to the electric field.


<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>rwohn6OXCUw<html>" frameborder="0" allowfullscreen></iframe>
</html>

Example 1

A cylinder of constant cross-section has a potential put across the ends. How do the currents and potential relate?

First, we're going to assume that the electric field inside the cylinder is going to be constant. Example 3 explains why this is true.

Next, we relate current to the electric field:

TODO



<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>oj-9SQQWLKo<html>" frameborder="0" allowfullscreen></iframe>
</html>

Example 2


<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>lyQymNCUMcY<html>" frameborder="0" allowfullscreen></iframe>
</html>



<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>GSEtbW3DRjQ<html>" frameborder="0" allowfullscreen></iframe>
</html>

Example 3


<html>
<iframe width="427" height="240" src="http://www.youtube.com/embed/</html>e_CDhwP41YE<html>" frameborder="0" allowfullscreen></iframe>
</html>


Problems

7.1.2 Electromotive Forces

Problems

7.1.3 Motional emf

Problems