Difference between revisions of "Introduction to Quantum Mechanics/Chapter 1/Problems"

From Jonathan Gardner's Physics Notebook
Jump to: navigation, search
(Created page with "= 1.14 = == 1.14.a == To find A, all we have to do is normalize the wave function. <math> \begin{align} 1 &= \int_{-\infty}^{+\infty} \Psi^*\Psi\ dx \\ &= \int_{-\infty}^...")
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
= 1.14 =
+
#REDIRECT [[Introduction to Quantum Mechanics/Chapter 1]]
 
 
== 1.14.a ==
 
 
 
To find A, all we have to do is normalize the wave function.
 
 
 
<math>
 
\begin{align}
 
1 &= \int_{-\infty}^{+\infty} \Psi^*\Psi\ dx \\
 
  &= \int_{-\infty}^{+\infty} A e^{-a[(mx^2/\hbar)-it} A e^{-a[(mx^2/\hbar)+it}\ dx \\
 
  &= \int_{-\infty}^{+\infty} A^2 e^{-2a(mx^2/\hbar)}\ dx \\
 
  &= A^2 \int_{-\infty}^{+\infty} e^{-2a(mx^2/\hbar)}\ dx & & \text{I had to look up how to solve this integral.}\\
 
 
 
\end{align}
 
</math>
 
 
 
How do you solve the integral above?
 
 
 
First, we substitute <math>b = {2am \over \hbar}</math> for simplicity. (These are all constants.)
 
 
 
Next, we note that this looks like the Gaussian integral. Although no definite integral exists, <math>\int_{-\infty}^{+\infty} e^-{x^2}\ dx = \sqrt{\pi}</math>.
 
 
 
Now all we have to do is eliminate the coefficient of x in the exponent. We can do this with integration by substitution, using <math>y^2 = b x^2,\ x = {y \over \sqrt{b}},\ dx = {1 \over \sqrt{b}}dy</math>
 
 
 
:<math>
 
\begin{align}
 
\int_{-\infty}^{+\infty} e^{-bx^2}\ dx
 
  &= \int_{-\infty}^{+\infty} {1 \over \sqrt{b}} e^{-y^2}\ dx \\
 
  &= \sqrt{{\pi \over b}}  \\
 
  &= \sqrt{{\pi \hbar \over 2am}} \\
 
1 &= A^2 \sqrt{{\pi \hbar \over 2am}} \\
 
A^2 &= \sqrt{{2am \over \pi \hbar}} \\
 
A &= \sqrt[4]{{2am \over \pi \hbar}} \\
 
\end{align}
 
</math>
 

Latest revision as of 13:24, 9 May 2012