|
|
(10 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | = 1.14 =
| + | #REDIRECT [[Introduction to Quantum Mechanics/Chapter 1]] |
− | | |
− | == 1.14.a ==
| |
− | | |
− | To find A, all we have to do is normalize the wave function.
| |
− | | |
− | <math>
| |
− | \begin{align}
| |
− | 1 &= \int_{-\infty}^{+\infty} \Psi^*\Psi\ dx \\
| |
− | &= \int_{-\infty}^{+\infty} A e^{-a[(mx^2/\hbar)-it} A e^{-a[(mx^2/\hbar)+it}\ dx \\
| |
− | &= \int_{-\infty}^{+\infty} A^2 e^{-2a(mx^2/\hbar)}\ dx \\
| |
− | &= A^2 \int_{-\infty}^{+\infty} e^{-2a(mx^2/\hbar)}\ dx & & \text{I had to look up how to solve this integral.}\\
| |
− | | |
− | \end{align}
| |
− | </math>
| |
− | | |
− | How do you solve the integral above?
| |
− | | |
− | First, we substitute <math>b = {2am \over \hbar}</math> for simplicity. (These are all constants.)
| |
− | | |
− | Next, we note that this looks like the Gaussian integral. Although no definite integral exists, <math>\int_{-\infty}^{+\infty} e^-{x^2}\ dx = \sqrt{\pi}</math>.
| |
− | | |
− | Now all we have to do is eliminate the coefficient of x in the exponent. We can do this with integration by substitution, using <math>y^2 = b x^2,\ x = {y \over \sqrt{b}},\ dx = {1 \over \sqrt{b}}dy</math>
| |
− | | |
− | :<math>
| |
− | \begin{align}
| |
− | \int_{-\infty}^{+\infty} e^{-bx^2}\ dx
| |
− | &= \int_{-\infty}^{+\infty} {1 \over \sqrt{b}} e^{-y^2}\ dx \\
| |
− | &= \sqrt{{\pi \over b}} \\
| |
− | &= \sqrt{{\pi \hbar \over 2am}} \\
| |
− | 1 &= A^2 \sqrt{{\pi \hbar \over 2am}} \\
| |
− | A^2 &= \sqrt{{2am \over \pi \hbar}} \\
| |
− | A &= \sqrt[4]{{2am \over \pi \hbar}} \\
| |
− | \end{align}
| |
− | </math>
| |