Difference between revisions of "Electrodynamics/Tutorials/3/4/1/Part 1"

From Jonathan Gardner's Physics Notebook
< Electrodynamics‎ | Tutorials‎ | 3‎ | 4‎ | 1
Jump to: navigation, search
(Created page with "{{:Electrodynamics/Tutorials/Video_Introduction}} == Introduction == Section 3.4 covers multipole expansions. What's this all about? Well, remember how we used to check our...")
 
(Example 10)
 
Line 17: Line 17:
 
We can do superposition and write down the exact equation without thinking very hard:
 
We can do superposition and write down the exact equation without thinking very hard:
  
:<math>V(P) = {1 \over 4 \pi \epsilon_0} \left( {q \over r_+} - {1 \over r_-} \right)\;</math>
+
:<math>V(P) = {1 \over 4 \pi \epsilon_0} \left( {q \over \mathfrak{r}_+} - {1 \over \mathfrak{r}_-} \right)\;</math>
  
What's the curly r? We can use the law of cosines:
+
What's the curly <math>\mathfrak{r}\;</math>? We can use the law of cosines:
  
:<math>r_+^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos \theta\;</math>  
+
:<math>\mathfrak{r}_+^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos \theta\;</math>  
:<math>r_-^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos (\pi - \theta)\;</math>  
+
:<math>\mathfrak{r}_-^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos (\pi - \theta)\;</math>  
  
 
The "other" angle pi minus theta is simply going to flip the sign of cosine.
 
The "other" angle pi minus theta is simply going to flip the sign of cosine.
  
:<math>r_-^2 = r^2 + \left( {s \over 2}\right)^2 + r s \cos (\theta)\;</math>  
+
:<math>\mathfrak{r}_-^2 =\mathfrak{r}^2 + \left( {s \over 2}\right)^2 + r s \cos (\theta)\;</math>  
  
 
Easy peasy.
 
Easy peasy.
Line 32: Line 32:
 
Now, if we massage this a bit, first by pulling out an r^2:
 
Now, if we massage this a bit, first by pulling out an r^2:
  
:<math>r_+^2 = r^2\left(1 + {s^2\over 4 r^2} - {s \over r} \cos \theta\right)\;</math>
+
:<math>\mathfrak{r}_+^2 = r^2\left(1 + {s^2\over 4 r^2} - {s \over r} \cos \theta\right)\;</math>
  
 
Then we can see what happens when <math>r >> s\;</math>. The middle term falls into 0 (cross it off):
 
Then we can see what happens when <math>r >> s\;</math>. The middle term falls into 0 (cross it off):
  
:<math>r_+^2 = r^2\left(1 - {s \over r} \cos \theta\right)\;</math>
+
:<math>\mathfrak{r}_+^2 = r^2\left(1 - {s \over r} \cos \theta\right)\;</math>
  
 
Square root:
 
Square root:
  
:<math>r_+ = r \left(1 - {s \over r} \cos \theta\right)^{1/2}\;</math>
+
:<math>\mathfrak{r}_+ = r \left(1 - {s \over r} \cos \theta\right)^{1/2}\;</math>
  
Invert (we want 1 over r, after all)
+
Invert (we want 1 over curly r, after all)
  
:<math>{1 \over r_+} = {1 \over r} \left(1 - {s \over r} \cos \theta \right)^{-1/2}\;</math>
+
:<math>{1 \over \mathfrak{r}_+} = {1 \over r} \left(1 - {s \over r} \cos \theta \right)^{-1/2}\;</math>
  
 
Griffiths mentions a binomial expansion. I'm going to help you out a bit...
 
Griffiths mentions a binomial expansion. I'm going to help you out a bit...
Line 61: Line 61:
  
 
Now we have:
 
Now we have:
:<math>{1 \over r_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right)\;</math>
+
:<math>{1 \over \mathfrak{r}_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right)\;</math>
  
 
For the negative one:
 
For the negative one:
  
:<math>{1 \over r_-} = {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>
+
:<math>{1 \over \mathfrak{r}_-} = {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>
  
 
(You can check that yourself.)
 
(You can check that yourself.)
Line 71: Line 71:
 
Now let's subtract the two:
 
Now let's subtract the two:
  
:<math>{1 \over r_+} - {1 \over r_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right) - {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>
+
:<math>{1 \over \mathfrak{r}_+} - {1 \over \mathfrak{r}_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right) - {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>
  
 
The 1's cancel, and the cosine terms combine:
 
The 1's cancel, and the cosine terms combine:
  
:<math>{1 \over r_+} - {1 \over r_+} = {s \over r^2} \cos \theta\;</math>
+
:<math>{1 \over \mathfrak{r}_+} - {1 \over r_+} = {s \over r^2} \cos \theta\;</math>
  
 
Plug it back in:
 
Plug it back in:

Latest revision as of 17:47, 21 September 2012

Video Intro

Hi, this is Jonathan Gardner.

We're covering [section reference] of Griffiths Introduction to Electrodynamics.

I'm going to move fast, but you can always rewind.

Thumbs up and share if you appreciate my effort.

As always, questions in a video response or comments.

Let's get started.

Introduction

Section 3.4 covers multipole expansions. What's this all about?

Well, remember how we used to check our answers by looking at distances far away from our charge distributions? If the charge distributions looked like a point charge with a charge of the total charge of the distribution, then we probably got our answer right.

However, that's not always going to be the case, especially when the net charge is zero.

Let's look at example 10.

Example 10

An electric dipole is two equal and opposite charges separated by a distance s. Find the approximate potential far away at a point P.

We can do superposition and write down the exact equation without thinking very hard:

<math>V(P) = {1 \over 4 \pi \epsilon_0} \left( {q \over \mathfrak{r}_+} - {1 \over \mathfrak{r}_-} \right)\;</math>

What's the curly <math>\mathfrak{r}\;</math>? We can use the law of cosines:

<math>\mathfrak{r}_+^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos \theta\;</math>
<math>\mathfrak{r}_-^2 = r^2 + \left( {s \over 2}\right)^2 - r s \cos (\pi - \theta)\;</math>

The "other" angle pi minus theta is simply going to flip the sign of cosine.

<math>\mathfrak{r}_-^2 =\mathfrak{r}^2 + \left( {s \over 2}\right)^2 + r s \cos (\theta)\;</math>

Easy peasy.

Now, if we massage this a bit, first by pulling out an r^2:

<math>\mathfrak{r}_+^2 = r^2\left(1 + {s^2\over 4 r^2} - {s \over r} \cos \theta\right)\;</math>

Then we can see what happens when <math>r >> s\;</math>. The middle term falls into 0 (cross it off):

<math>\mathfrak{r}_+^2 = r^2\left(1 - {s \over r} \cos \theta\right)\;</math>

Square root:

<math>\mathfrak{r}_+ = r \left(1 - {s \over r} \cos \theta\right)^{1/2}\;</math>

Invert (we want 1 over curly r, after all)

<math>{1 \over \mathfrak{r}_+} = {1 \over r} \left(1 - {s \over r} \cos \theta \right)^{-1/2}\;</math>

Griffiths mentions a binomial expansion. I'm going to help you out a bit...

<math>(1 + x)^n = 1 + {n \over 1!}x^1 + {n(n-1) \over 2!}x^2 + {n(n-1)(n-2) \over 3!}x^3\;</math>

The condition is that x must be between 1 and negative 1. We certainly satisfy this condition. cosine can only be -1 to 1, and s is much smaller than r.

(Be sure to like & share this video: I'm saving you a lot of time!)

Let's plug in what we have, n=-1/2, and x=-s/r cos theta, right? So the first few terms are:

<math>1 + \left({-1 \over 2}\right) \left(-{s \over r} \cos \theta\right) + ...</math>

We'll ignore the higher terms; we're physicist and we're approximating, so we can ignore pretty much whatever we feel like ignoring.

Now we have:

<math>{1 \over \mathfrak{r}_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right)\;</math>

For the negative one:

<math>{1 \over \mathfrak{r}_-} = {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>

(You can check that yourself.)

Now let's subtract the two:

<math>{1 \over \mathfrak{r}_+} - {1 \over \mathfrak{r}_+} = {1 \over r}\left(1 + {s \over 2r} \cos \theta\right) - {1 \over r}\left(1 - {s \over 2r} \cos \theta\right)\;</math>

The 1's cancel, and the cosine terms combine:

<math>{1 \over \mathfrak{r}_+} - {1 \over r_+} = {s \over r^2} \cos \theta\;</math>

Plug it back in:

<math>V(P) = {1 \over 4 \pi \epsilon_0} {q s \cos \theta \over r^2}\;</math>

Which is neat and tidy and happy.

This says that while a single point charge goes 1/r, a dipole's potential goes 1/r^2. For quadrapoles and octopoles, they drop off by 1/r^3 and 1/r^4.

Note that q is not the total charge---that's zero for dipoles and above. It is the charge of 1/2 of the dipole.

(Draw them).

Electrodynamics/Tutorials/3/4/1/Part 2