Introduction to Quantum Mechanics/Chapter 1/Problems
Contents
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
I would encourage you to struggle with 1.14 on your own. If you get this, you get the whole chapter.
Don't read my hints unless you get really stuck.
Learn how to find your own math solutions. Mathematica or WolframAlpha.com are tremendous resources.
Hints
You might want to start by first calculating all the derivatives you need for the problems.
You're going to do <math>\Psi^*\Psi</math> several times. Just write it down and reuse it rather than recalculate it each time.
Notice that the wave function has all the variables bound up as an exponent to e. When you take a derivative of it, you get back the original exponential term times something. Write the derivatives in terms of <math>\Psi</math>. Thank me later.
For <math>\langle p^2 \rangle</math>, notice that you get a huge integral with two terms. Can you rewrite it as two integrals? Can you rewrite those integrals as integrals you've already solved?
Math Help
These integral identities will make your life much easier. Use integration by substitution to make them fit.
<math> \begin{align} \int_{-\infty}^{+infty}f(x)\ dx &= 0 \text{ if }f(-x) = f(-x)\\ \int_{-\infty}^{+infty}e^{-x^2}\ dx &= \sqrt{\pi} \text{ Gaussian integral} \\ \int_{-\infty}^{+infty}x^2e^{-ax^2}\ dx &= {1 \over 2} {\sqrt{\pi} \over a^{3/2}} \\ \end{align} </math>
1.14.a
To find A, all we have to do is normalize the wave function.
<math> \begin{align} 1 &= \int_{-\infty}^{+\infty} \Psi^*\Psi\ dx \\
&= \int_{-\infty}^{+\infty} A e^{-a[(mx^2/\hbar)-it]} A e^{-a[(mx^2/\hbar)+it]}\ dx \\ &= \int_{-\infty}^{+\infty} A^2 e^{-2a(mx^2/\hbar)}\ dx \\ &= A^2 \int_{-\infty}^{+\infty} e^{-2a(mx^2/\hbar)}\ dx & & \text{I had to look up how to solve this integral.}\\
\end{align} </math>
How do you solve the integral above?
First, we substitute <math>b = {2am \over \hbar}</math> for simplicity. (These are all constants.)
Next, we note that this looks like the Gaussian integral. Although no definite integral exists, <math>\int_{-\infty}^{+\infty} e^-{x^2}\ dx = \sqrt{\pi}</math>.
Now all we have to do is eliminate the coefficient of x in the exponent. We can do this with integration by substitution, using <math>y^2 = b x^2,\ x = {y \over \sqrt{b}},\ dx = {1 \over \sqrt{b}}dy</math>
- <math>
\begin{align} \int_{-\infty}^{+\infty} e^{-bx^2}\ dx
&= \int_{-\infty}^{+\infty} {1 \over \sqrt{b}} e^{-y^2}\ dx \\ &= \sqrtTemplate:\pi \over b \\ &= \sqrtTemplate:\pi \hbar \over 2am \\
1 &= A^2 \sqrtTemplate:\pi \hbar \over 2am \\ A^2 &= \sqrtTemplate:2am \over \pi \hbar \\ A &= \sqrt[4]Template:2am \over \pi \hbar \\ \end{align} </math>
1.14.b
The derivatives are not that hard.
<math> \begin{align} {\partial \over \partial t} \Psi &= {\partial \over \partial t}\left( A e^{-a[(mx^2/\hbar)+it]} \right ) \\ &= {\partial \over \partial t}\left( A e^{-a(mx^2/\hbar)}e^{-ait} \right ) \\ &= A e^{-a(mx^2/\hbar)}{\partial \over \partial t} e^{-ait} \\ &= A e^{-a(mx^2/\hbar)}(-ai) e^{-ait} \\ &= -ai A e^{-a[(mx^2/\hbar)+it]} \\ &= -ai \Psi \\
{\partial \over \partial x} \Psi &= {\partial \over \partial x}\left( A e^{-a[(mx^2/\hbar)+it]} \right ) \\ &= A e^{-ait} {\partial \over \partial x} e^{-a(mx^2/\hbar)} \\ &= A e^{-ait} e^{-a(mx^2/\hbar)} {\partial \over \partial x} [-a(mx^2/\hbar)] & & \text{Chain rule.} (f(g))' = f'(g)g';\ f = e^x;\ g = -a(mx^2/\hbar) \\ &= A e^{-ait} e^{-a(mx^2/\hbar)} [-a(2mx/\hbar)] \\ &= {-2 a mx \over \hbar} A e^{-a[(mx^2/\hbar)+it]} \\ &= {-2 a mx \over \hbar} \Psi \\
{\partial^2 \over \partial x^2} \Psi &= {\partial \over \partial x}{\partial \over \partial x} \Psi \\ &= {\partial \over \partial x}\left( {-2 a m x \over \hbar} \Psi \right) \\ &= {-2 a m \over \hbar}{\partial \over \partial x}(x \Psi) \\ &= {-2 a m \over \hbar}\left({\partial \over \partial x}(x)\Psi + x{\partial \over \partial x}\Psi\right) \\ &= {-2 a m \over \hbar}\left(\Psi + x {-2 a m x \over \hbar} \Psi \right) \\ &= {-2 a m \over \hbar}\left(1 + x {-2 a m x \over \hbar} \right) \Psi \\ &= {-2 a m \over \hbar}\left(1 - {2 a m x^2 \over \hbar} \right) \Psi \\ &= {2 a m \over \hbar}\left({2 a m x^2 \over \hbar} - 1 \right) \Psi \\ &= {2 a m \over \hbar}\left({2 a m x^2 \over \hbar} - {\hbar \over \hbar} \right) \Psi \\ &= {2 a m \over \hbar^2} (2 a m x^2 - \hbar) \Psi \\ \end{align} </math>
Let's plug & chug.
<math> \begin{align} i\hbar {\partial \Psi \over \partial t} &= - {\hbar^2 \over 2m} {\partial^2 \Psi \over \partial x^2} + V \Psi \\
i\hbar (-ai \Psi) &= - {\hbar^2 \over 2m} {2am \over \hbar^2} (2amx^2 - \hbar) \Psi + V \Psi \ a \hbar \Psi &= - a (2amx^2 - \hbar) \Psi + V \Psi \\ a \hbar &= - a (2amx^2 - \hbar) + V \\ V &= a \hbar + a (2amx^2 - \hbar) \\ &= 2 a^2 m x^2
\end{align} </math>
I'm pretty sure I've made several mistakes. I have to go over this carefully to see where. Jgardner 22:18, 3 May 2012 (MDT)
I caught the mistake. I had lost a negative sign in the x derivative term. Jgardner 01:30, 4 May 2012 (MDT)
1.14.c
<math> \begin{align} \langle x \rangle
&= \int_{-\infty}^{+\infty} \Psi^* x \Psi\ dx \\ &= \int_{-\infty}^{+\infty} x \Psi^* \Psi\ dx \\ &= \int_{-\infty}^{+\infty} x A^2 e^{-2amx^2/\hbar}\ dx & & \text{Note that }x e^{-bx^2}\text{ is odd.} \\ &= 0 & & \text{Centered at the origin.} \\
\langle x^2 \rangle
&= \int_{-\infty}^{+\infty} \Psi^* x^2 \Psi\ dx \\ &= \int_{-\infty}^{+\infty} x^2 A^2 e^{-2amx^2/\hbar}\ dx \\ &= {A^2 \sqrt{\pi} \over 2 \left(2am / \hbar\right)^{3/2}} \\ &= {\sqrt{2am \pi} \hbar^{3/2} \over 2 \sqrt{\pi \hbar} (2am)^{3/2}} \\ &= {\hbar \over 4am} & & \text{Looks like it is spread out a bit.}\\
\langle p \rangle
&= \int_{-\infty}^{+\infty} \Psi^* (-i \hbar) {\partial \over \partial x} \Psi\ dx \\ &= \int_{-\infty}^{+\infty} \Psi^* (-i \hbar) {-2 a mx \over \hbar} \Psi\ dx \\ &= \int_{-\infty}^{+\infty} \Psi^* 2 a m x i \Psi\ dx \\ &= 2 a m i \int_{-\infty}^{+\infty} x \Psi^* \Psi\ dx & & \text{Odd function. (See above)} \\ &= 0 & & \text{It looks like it has an equal chance of going left or right.} \\
\langle p^2 \rangle
&= \int_{-\infty}^{+\infty} \Psi^* \left((-i \hbar) {\partial \over \partial x}\right)^2 \Psi\ dx \\ &= \int_{-\infty}^{+\infty} \Psi^* (-\hbar^2) {\partial^2 \over \partial x^2} \Psi\ dx \\ &= \int_{-\infty}^{+\infty} \Psi^* (-\hbar^2) {2 a m \over \hbar^2} (2 a m x^2 - \hbar) \Psi\ dx \\ &= -2am \int_{-\infty}^{+\infty} \Psi^* (2 a m x^2 - \hbar) \Psi\ dx \\ &= -2am \left( \int_{-\infty}^{+\infty} \Psi^* 2amx^2 \Psi\ dx - \int_{-\infty}^{+\infty} \Psi^* \hbar \Psi\ dx \right) \\ &= -2am \left( 2am \int_{-\infty}^{+\infty} \Psi^* x^2 \Psi\ dx - \hbar \int_{-\infty}^{+\infty} \Psi^* \Psi\ dx \right) & & \text{We've already done these integrals, remember?} \\ &= -2am ( 2am \langle x^2 \rangle - \hbar) \\ &= -2am ( 2am {\hbar \over 4am} - \hbar) \\ &= -2am ( {\hbar \over 2} - \hbar) \\ &= -2am ( - {\hbar \over 2}) \\ &= am\hbar & & \text{It seems to be either moving back or forth.} \\
\end{align} </math>
I have to admit, the result for <math>\langle p^2 \rangle</math> surprises me a great deal. I'd expect it to be non-zero, so that <math>\sigma_p</math> would be non-zero. I obviously made a mistake. Jgardner 01:01, 4 May 2012 (MDT)
It turns out that I had miscalculated <math>\langle x^2 \rangle</math>, forgetting a factor of 1/2.
1.14.d
<math> \begin{align} \sigma_x^2 &= \langle x^2 \rangle - \langle x \rangle ^2 \\
&= {\hbar \over 4am} \\
\sigma_p^2 &= \langle p^2 \rangle - \langle p \rangle ^2 \\
&= am\hbar
\sigma_x \sigma_p &= \sqrt{{\hbar \over 4am}am\hbar} \\
&= \sqrtTemplate:\hbar^2 \over 4 &= {\hbar \over 2} \ge {\hbar \over 2} \\
\end{align} </math>
This appears to be the best combination of momentum and position we can hope for given the uncertainty principle. Jgardner 02:02, 4 May 2012 (MDT)
Comments
This is actually a really good example that you can think hard about to really understand what is going on in the wave function.
Since the wave function is complex, you can think of it as <math>\Psi = \Psi_{real} + \Psi_{imag} i</math>. You can see how <math>r^2 = \Psi_{real}^2 + \Psi_{imag}^2</math> is constant over time for any given point. The time derivative has the wave rotating with a period of <math>2 \pi / a</math> clockwise. The time derivative for the complex conjugate is moving at the same speed backwards.
The overall shape of the wave over x is simply the Gaussian. It smooths out to 0 in either direction, with a nice rounded bump in the middle. If it weren't for the potential pushing it towards the origin, it would spread out over time.
Speaking of the potential, it is zero at the origin, and squeezes with parabolic energy as you move out. This is the force not of gravity near the surface of the earth (which doesn't vary based on how far from the surface you move), but a spring. The farther away you go, the harder it pushes you back to the middle.
If you plug in the time and space derivatives into the schrodinger equation, you get something that looks like this:
<math> \begin{align} i \hbar {\partial \over \partial t} \Psi &= -{\hbar \over 2m} {\partial^2 \over \partial x^2} \Psi + V \Psi \\ a \hbar \Psi &= a\hbar(1 - 2max^2)\Psi + a\hbar2max^2 \Psi \\ \Psi &= (1 - 2max^2)\Psi + 2max^2 \Psi \\ \end{align} </math>
The left side is how the wave function changes over time. There is a natural turning that forces the wave function to rotate through imaginary space -- the i factor.
The first term on the right is how the wave function wants to spread out over space. The wave function has a natural repulsiveness to itself. (Or is this the momentum term---if it is moving, it wants to keep on moving?)
The last term on the right is how the potential, the external force, is forcing the wave function to stick together around the origin.
The wave function described is a sort of steady state. It has reached a point where it no longer changes over time (except for a constant spinning through the imaginary space.)
You can imagine taking a single point in time. You can see how every point along the x axis has a force <math>F = - {\partial V \over \partial x}</math>.