Introduction to Electrodynamics/Problem 2.7
Contents
Introduction
This is rather difficult.
It wasn't terribly hard to get the integral. You can do this by brute force, which I demonstrate below.
However, the integral you arrive at is not trivial. I had to do the following to solve it:
- Look it up in a table. Couldn't find it.
- Try my hand at substitution of variables. The obvious choice worked well.
- The resulting integral could be looked up, but it was a mess.
- Looking at the solutions manual, I was not surprised that Griffiths just assumed that the student would be able to solve the integral. He spent about 4 words on the solution, with most of them being "look it up".
- I tried several other substitution of variables. The one that would've worked was not the one that I tried.
- By luck, I stumbled across a simple, clean solution to the second integral in Wolframalpha.com. It was a substitution of variables that I could've used.
- From there, it was all algebra.
The solution to the integral is not the end of the story. As he hints in the problem, you have to think about the signs of everything. Guess wrong, and you get either 2 or -2 or 0. I'll talk about this extensively below.
Setting Up the Integral
Calculating r
First, let's start with a formal definition of <math>\mathbf{r}</math>. This is the vector that points from a point on the surface of the sphere to the point z above the x-y plane.
So, it is simply:
<math> \begin{align} \mathbf{r} &= \mathbf{P} - \text{some point on the sphere} \\
&= (z \hat k) - (R \sin \theta \cos \phi \hat i + R \sin \theta \sin \phi \hat j + R \cos \theta \hat k) \\ &= -R \sin \theta \cos \phi \hat i -R \sin \theta \sin \phi \hat j + (z - R \cos \theta) \hat k \\
\end{align} </math>
The quantity <math>r^2</math> is simply <math>\mathbf{r} \dot \mathbf{r}</math>:
<math> \begin{align} r^2 &= R^2 \sin^2 \theta \cos^2 \phi + R^2 \sin^2 \theta \sin^2 \phi + (z - R \cos \theta)^2 \\
&= R^2 \sin^2 \theta + z^2 + R^2 \cos ^2 \theta - 2 z R \cos \theta \\ &= R^2 + z^2 - 2 z R \cos \theta \\
\end{align} </math>
Since this is what the Law of Cosines would've given us, it's not surprising.
Calculating the r term
Now, to calculate the elusive quantity <math>\hat r / r^2 = \mathbf{r} / (\mathbf{r} \dot \mathbf{r})^{3/2}</math>:
<math> \begin{align} {\hat r \over r^2} &= {-R \sin \theta \cos \phi \hat i -R \sin \theta \sin \phi \hat j + (z - R \cos \theta) \hat k
\over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
\end{align} </math>
Calculating the Infinitesimal Field
With this, we can calculate the infinitesimal <math>d\mathbf{E}</math>.
<math> \begin{align} d\mathbf{E} &= {1 \over 4 \pi \epsilon_0} \sigma da {\hat r \over r^2} \\
&= dE_x \hat i + dE_y \hat j + dE_z \hat k \\ da &= R^2 \sin \theta d\theta d\phi \\
dE_x &= -{1 \over 4 \pi \epsilon_0} \sigma R^2 \sin \theta d\theta d\phi {R \sin \theta \cos \phi \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
&= -{1 \over 4 \pi \epsilon_0} { \sigma R^3 \sin^2 \theta d\theta \cos \phi d\phi \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
dE_y &= -{1 \over 4 \pi \epsilon_0} \sigma R^2 \sin \theta d\theta d\phi {R \sin \theta \sin \phi \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
&= -{1 \over 4 \pi \epsilon_0} { \sigma R^3 \sin^2 \theta d\theta \sin \phi d\phi \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
dE_z &= {1 \over 4 \pi \epsilon_0} \sigma R^2 \sin \theta d\theta d\phi {z - R \cos \theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
&= {1 \over 4 \pi \epsilon_0} {\sigma R^2 \sin \theta d\theta d\phi (z - R \cos \theta) \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
\end{align} </math>
Horizontal Components Cancel
Of note, the x and y components of the electric field will be zero when integrating over the sphere. This is because they will cancel out with the <math>\phi</math> integral. If you didn't see this obvious result, the calculations to show it to be so are below.
<math> \begin{align} \int dE_x &= \int -{1 \over 4 \pi \epsilon_0} { \sigma R^3 \sin^2 \theta d\theta \cos \phi d\phi \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
&= -{1 \over 4 \pi \epsilon_0} \sigma R^3 \int_{\phi=0}^{2\pi} \cos \phi d\phi \int_{\theta=0}^{\pi} {\sin^2 \theta d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\ &= -{1 \over 4 \pi \epsilon_0} \sigma R^3 (\sin \phi) \big|_{0}^{2\pi} \int_{\theta=0}^{\pi} {\sin^2 \theta d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\ &= -{1 \over 4 \pi \epsilon_0} \sigma R^3 (\sin 2\pi - \sin 0) \int_{\theta=0}^{\pi} {\sin^2 \theta d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\ &= -{1 \over 4 \pi \epsilon_0} \sigma R^3 (0) \int_{\theta=0}^{\pi} {\sin^2 \theta d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\ &= 0 \\
\int dE_y &= 0 \text{ by similar reasoning}\\ \end{align} </math>
The z component
The z component, of course, is where the electric field will end up.
<math> \begin{align} \mathbf{E} &= \int dE_z \hat k \\ \int dE_z &= \int {1 \over 4 \pi \epsilon_0} {\sigma R^2 \sin \theta d\theta d\phi (z - R \cos \theta) \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
&= {1 \over 4 \pi \epsilon_0} \sigma R^2 \int_{0}^{2\pi} d\phi \int_{0}^{\pi} {\sin \theta (z - R \cos \theta) d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\ &= {1 \over 4 \pi \epsilon_0} 2 \pi \sigma R^2 \int_{0}^{\pi} {\sin \theta (z - R \cos \theta) d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}} \\
\end{align} </math>
Solving the Integral: Substitution 1
The integral is pretty scary. If you look it up, you may not find it.
My first guess is to substitute <math>x = - \cos \theta; \ dx = \sin \theta d\theta</math>. Don't forget to change the boundaries.
<math> \begin{align} \int_{0}^{\pi} {(z - R \cos \theta) \sin \theta d\theta \over (R^2 + z^2 - 2 z R \cos \theta)^{3/2}}
&= \int_{-1}^{1} {(z + R x) dx \over (R^2 + z^2 + 2 z R x)^{3/2}} \\
\end{align} </math>
Wrong Turn 1: The Sum of Two Integrals
(I include this because it shows how much work you have to do to see when you have gone down a bad road.)
The integral is really the sum of two different integrals now. The first one I looked up in a table of integrals:
<math> \begin{align} \int_{-1}^{1} {z dx \over (R^2 + z^2 + 2 z R x)^{3/2}}
&= z \int_{-1}^{1} (R^2 + z^2 + 2 z R x)^{-3/2} dx \\ &= z \int_{-1}^{1} (a + b x)^{n} dx && \text{ where } a = R^2 + z^2,\ b = 2zR,\ n = -3/2 \\ &= z \left ( {(a + bx)^{n+1} \over b(n+1)} \right ) \bigg |_{-1}^1 \\ &= {z \over b(n+1)} \left ( {1 \over \sqrt{a+b}} - {1 \over \sqrt{a-b}} \right) \\ &= -{1 \over R} {\sqrt{a-b} - \sqrt{a+b} \over \sqrt{(a+b)} \sqrt{(a-b)}} \\ &= {\sqrt{a+b} - \sqrt{a-b} \over R \sqrt{(a+b)} \sqrt{(a-b)}} \\
\end{align} </math>
It is at this point that we must pause. Since we have square roots, the question is do we take the positive or the negative roots?
We'll try the other half of the integral now.
<math> \begin{align} \int_{-1}^{1} {R x dx \over (R^2 + z^2 + 2 z R x)^{3/2}}
&= R \int_{-1}^{1} x (R^2 + z^2 + 2 z R x)^{-3/2} dx \\ &= R \int_{-1}^{1} x (a + b x)^{n} dx && \text{ same values of } a, b, n \\ &= R \left( {(a + bx)^{n+2} \over b^2(n+2)} \right) \bigg |_{-1}^{1} \\ &= R {\sqrt{a + b} - \sqrt{a - b} \over 2 z^2 R^2} \\ &= {\sqrt{a + b} - \sqrt{a - b} \over 2 z^2 R} \\
\end{align} </math>
Once again, we must pause.
At this point, let's combine the two integrals.
<math> \begin{align} \int_{-1}^{1} {(z + R x) dx \over (R^2 + z^2 + 2 z R x)^{3/2}}
&= {\sqrt{a+b} - \sqrt{a-b} \over R \sqrt{(a+b)} \sqrt{(a-b)}} + {\sqrt{a+b} - \sqrt{a-b} \over 2 z^2 R} \\
\end{align} </math>
Note that:
<math> \begin{align} (a+b) &= R^2 + z^2 + 2zR \\
&= (R+z)^2 \\
(a-b) &= R^2 + z^2 - 2zR \\
&= (R-z)^2
\end{align} </math>
Let's talk about the square roots. We have only two square roots that appear above.
<math> \begin{align} \sqrt{a+b} &= \sqrt{(R+z)^2} \\
&= \pm (R+z) \\
\sqrt{a-b} &= \sqrt{(R-z)^2} \\
&= \pm (R-z) \\
\end{align} </math>
Substituting that in:
<math> \begin{align} & {\sqrt{a+b} - \sqrt{a-b} \over R \sqrt{(a+b)} \sqrt{(a-b)}} + {\sqrt{a+b} - \sqrt{a-b} \over 2 z^2 R} \\ &= {\pm (R+z) \pm(R-z) \over R (R+z)(R-z)} + {\pm(R+z) \pm(R-z) \over 2z^2R} \\ &= {\pm 2z^2 (R+z) \pm 2z^2 (R-z) \pm (R+z)^2(R-z) \pm (R+z)(R-z)^2 \over 2z^2R(R+z)(R-z)} \\ \end{align} </math>
Now my bias is going to show. I am going to expect that the electric field is going to be:
<math> \begin{align} \mathbf{E} &= {1 \over 4 \pi \epsilon_0} {4 \pi R^2 \sigma \over z^2} \hat k && \text{ when } z > R \text{ (point charge) } \\ \mathbf{E} &= 0 && \text{ when } z < R \\ \end{align} </math>
Why is this the case? Because of Gauss's Law.
The question is: Can I change the mess I have above into the two equations I described?
When <math>z > R</math>, then the integral I tried to solve should equal <math>2 / z^2</math>.
When <math>z < R</math>, all I have to show is that the integral we tried so hard to solve is 0.