Introduction to Electrodynamics/Chapter 7/5/3
7.5.3 Maxwell's Stress Tensor
The total force acting on charges inside a volume V:
- <math>\vec{F} = \int_V (\vec{E} + \vec{v} \times \vec{B})\rho\ d\tau = \int_V (\rho\vec{E} + \vec{J}\times\vec{B})\ d\tau\;</math>
Force per unit volume:
- <math>\vec{\mathcal{F}} = \rho\vec{E} + \vec{J}\times\vec{B}\;</math>
Let's express this in terms of E and B alone.
Gauss's Law:
- <math>\rho = \epsilon_0 \nabla \cdot \vec{E}\;</math>
Ampere's Law with Maxwell's Correction:
- <math>\vec{J} = {1 \over \mu_0} \nabla \times \vec{B} - \epsilon_0 {\partial \vec{E} \over \partial t}\;</math>
Plug it in:
- <math>\vec{\mathcal{F}} = \epsilon_0 (\nabla \cdot \vec{E}) \vec{E} + \left( {1 \over \mu_0} \nabla \times \vec{B} - \epsilon_0 {\partial \vec{E} \over \partial t} \right) \times \vec{B}\;</math>
- <math>\vec{\mathcal{F}} = \epsilon_0 (\nabla \cdot \vec{E}) \vec{E} + {1 \over \mu_0} (\nabla \times \vec{B}) \times \vec{B} - \epsilon_0 {\partial \vec{E} \over \partial t} \times \vec{B}\;</math>
Notice:
- <math>{\partial \over \partial t} (\vec{E} \times \vec{B}) = {\partial \vec{E} \over \partial t} \times \vec{B} + \vec{E} \times {\partial \vec{B} \over \partial t}\;</math>
Faraday's Law:
- <math>{\partial \over \partial t} (\vec{E} \times \vec{B}) = {\partial \vec{E} \over \partial t} \times \vec{B} - \vec{E} \times (\nabla \times \vec{E})\;</math>
Reorder terms:
- <math>{\partial \vec{E} \over \partial t} \times \vec{B} = {\partial \over \partial t} (\vec{E} \times \vec{B}) + \vec{E} \times (\nabla \times \vec{E})\;</math>
Plug it in to our force per unit volume equation: