Difference between revisions of "Mathematical Methods in the Physical Sciences/Chapter 4/Section 1"

From Jonathan Gardner's Physics Notebook
Jump to: navigation, search
(Created page with "== Notes == If <math>z = f(x,y)</math>: * <math>{\partial z \over \partial x}</math> is the ''partial derivative of z with respect to x''. ** Note that <math>y</math> is held...")
 
(1)
Line 18: Line 18:
  
 
=== 1 ===
 
=== 1 ===
 +
 +
<math>
 +
 +
\begin{align}
 +
{\partial u \over \partial x}
 +
&= {\partial \over \partial x}\left ({x^2 \over x^2 + y^2} \right ) \\
 +
&= \frac{(x^2 + y^2){\partial \over \partial x}x^2 - x^2{\partial \over \partial x}(x^2 + y^2)}
 +
        {(x^2 + y^2)^2}
 +
&\qquad \left ( {u \over v} \right )' = {v u' - u v' \over v^2} \\
 +
&= {(x^2 + y^2)2x - x^2{\partial \over \partial x}(x^2 + y^2)
 +
        \over (x^2 + y^2)^2} \\
 +
&= {(x^2 + y^2)2x - x^2\left({\partial \over \partial x}x^2 + {\partial \over \partial x}y^2\right)
 +
        \over (x^2 + y^2)^2} \\
 +
&= {(x^2 + y^2)2x - x^2\left(2x + {\partial \over \partial x}y^2\right)
 +
        \over (x^2 + y^2)^2} \\
 +
&= {(x^2 + y^2)2x - x^2(2x + 0)
 +
        \over (x^2 + y^2)^2} \\
 +
&= {(x^2 + y^2)2x - 2x^3 \over (x^2 + y^2)^2} \\
 +
&= {2x^3 + 2xy^2 - 2x^3 \over (x^2 + y^2)^2} \\
 +
&= {2xy^2 \over (x^2 + y^2)^2} \\
 +
\end{align}
 +
</math>
 +
 +
 +
 +
<math>
 +
\begin{align}
 +
{\partial u \over \partial y}
 +
&= {\partial \over \partial y}\left ({x^2 \over x^2 + y^2} \right ) \\
 +
&= \frac{(x^2 + y^2){\partial \over \partial y}x^2 - x^2{\partial \over \partial y}(x^2 + y^2)}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{(x^2 + y^2)0 - x^2{\partial \over \partial y}(x^2 + y^2)}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{x^2{\partial \over \partial y}(x^2 + y^2)}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{x^2\left ({\partial \over \partial y}x^2 + {\partial \over \partial y}y^2 \right )}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{x^2\left (0 + {\partial \over \partial y}y^2 \right )}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{x^2 (0 + 2y)}
 +
        {(x^2 + y^2)^2} \\
 +
&= \frac{2x^2y}
 +
        {(x^2 + y^2)^2} \\
 +
\end{align}
 +
</math>
 +
 
=== 2 ===
 
=== 2 ===
 
=== 3 ===
 
=== 3 ===

Revision as of 12:24, 19 April 2012

Notes

If <math>z = f(x,y)</math>:

  • <math>{\partial z \over \partial x}</math> is the partial derivative of z with respect to x.
    • Note that <math>y</math> is held constant, and we're seeing how <math>z</math> changes as we vary <math>x</math>
  • <math>{\partial ^2 z \over \partial\, x \partial y}</math> means <math>{\partial \over \partial x}{\partial z \over \partial y}</math>
  • <math>f_1 \equiv f_x \equiv z_x \equiv {\partial f \over \partial x} \equiv {\partial z \over \partial x}</math>
  • <math>f_{21} \equiv f_{yx} \equiv z_{yx} \equiv {\partial ^2 z \over \partial\, x \partial y} \equiv {\partial \over \partial x}{\partial z \over \partial y}</math>

If <math>z = f(x,y),\ x = g(r, \theta),\ y = h(r, \theta)</math>, then we can rewrite <math>z</math> in any combination of any variable.

  • <math>\left ( {\partial z \over \partial x} \right )_r</math> means take z, rewrite it in terms of x and r only, and then take the partial derivative of z with respect to x holding r constant.
  • Mathematicians don't like physicists because we re-use the same function name even though we are changing parameters. For instance, we say <math>f(x,y) = f(r, \theta)</math> which means we infer a lot about which <math>f</math> we are talking about.

<math>{\partial^2 f \over \partial x \, \partial y} = {\partial^2 f \over \partial y \, \partial x}</math> when both derivatives are continuous.

Problems

1

<math>

\begin{align} {\partial u \over \partial x}

&= {\partial \over \partial x}\left ({x^2 \over x^2 + y^2} \right ) \\
&= \frac{(x^2 + y^2){\partial \over \partial x}x^2 - x^2{\partial \over \partial x}(x^2 + y^2)}
        {(x^2 + y^2)^2}
&\qquad \left ( {u \over v} \right )' = {v u' - u v' \over v^2} \\
&= {(x^2 + y^2)2x - x^2{\partial \over \partial x}(x^2 + y^2)
       \over (x^2 + y^2)^2} \\
&= {(x^2 + y^2)2x - x^2\left({\partial \over \partial x}x^2 + {\partial \over \partial x}y^2\right)
       \over (x^2 + y^2)^2} \\
&= {(x^2 + y^2)2x - x^2\left(2x + {\partial \over \partial x}y^2\right)
       \over (x^2 + y^2)^2} \\
&= {(x^2 + y^2)2x - x^2(2x + 0)
       \over (x^2 + y^2)^2} \\
&= {(x^2 + y^2)2x - 2x^3 \over (x^2 + y^2)^2} \\
&= {2x^3 + 2xy^2 - 2x^3 \over (x^2 + y^2)^2} \\
&= {2xy^2 \over (x^2 + y^2)^2} \\

\end{align} </math>


<math> \begin{align} {\partial u \over \partial y}

&= {\partial \over \partial y}\left ({x^2 \over x^2 + y^2} \right ) \\
&= \frac{(x^2 + y^2){\partial \over \partial y}x^2 - x^2{\partial \over \partial y}(x^2 + y^2)}
        {(x^2 + y^2)^2} \\
&= \frac{(x^2 + y^2)0 - x^2{\partial \over \partial y}(x^2 + y^2)}
        {(x^2 + y^2)^2} \\
&= \frac{x^2{\partial \over \partial y}(x^2 + y^2)}
        {(x^2 + y^2)^2} \\
&= \frac{x^2\left ({\partial \over \partial y}x^2 + {\partial \over \partial y}y^2 \right )}
        {(x^2 + y^2)^2} \\
&= \frac{x^2\left (0 + {\partial \over \partial y}y^2 \right )}
        {(x^2 + y^2)^2} \\
&= \frac{x^2 (0 + 2y)}
        {(x^2 + y^2)^2} \\
&= \frac{2x^2y}
        {(x^2 + y^2)^2} \\

\end{align} </math>

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

7'

8'

9'

10'

11'

12'

13'

14'

15'

16'

17'

18'

19'

20'

21'

22'

23'

24'