Mathematical Methods in the Physical Sciences/Chapter 1/Section 5

From Jonathan Gardner's Physics Notebook
< Mathematical Methods in the Physical Sciences‎ | Chapter 1
Revision as of 18:07, 18 April 2012 by Jgardner (talk | contribs) (Created page with "== Overview == Introducing the preliminary test! == Notes == * The '''preliminary test''' of the convergence of a series says if <math>\lim_{n \to \infty}a_n \ne 0</math>, ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Overview

Introducing the preliminary test!

Notes

  • The preliminary test of the convergence of a series says if <math>\lim_{n \to \infty}a_n \ne 0</math>, then the series diverges.
  • The preliminary test say nothing about convergence.

Problems

#1

Each term is <math>{(-1)^n n^2 \over n^2-1}</math>. The limit is:

<math> \begin{align} &\lim_{n \to \infty}{(-1)^n n^2 \over n^2-1} \\ &= \lim_{n \to \infty}(-1)^n \lim_{n \to \infty}{n^2 \over n^2-1} \\ &= \lim_{n \to \infty}(-1)^n \lim_{n \to \infty}{2n \over 2n} \text{ (L'Hopital's Rule)} \\ &= \lim_{n \to \infty}(-1)^n </math>

Series diverges.

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11