Mathematical Methods in the Physical Sciences/Chapter 1/Section 5
Contents
Overview
Introducing the preliminary test!
Notes
- The preliminary test of the convergence of a series says if <math>\lim_{n \to \infty}a_n \ne 0</math>, then the series diverges.
- The preliminary test say nothing about convergence.
Problems
#1
Each term is <math>{(-1)^n n^2 \over n^2-1}</math>. The limit is:
<math> \begin{align} &\lim_{n \to \infty}{(-1)^n n^2 \over n^2-1} \\ &= \lim_{n \to \infty}(-1)^n \lim_{n \to \infty}{n^2 \over n^2-1} \\ &= \lim_{n \to \infty}(-1)^n \lim_{n \to \infty}{2n \over 2n} \text{ (L'Hopital's Rule)} \\ &= \lim_{n \to \infty}(-1)^n </math>
Series diverges.