Mathematical Methods in the Physical Sciences/Chapter 4/Section 1

From Jonathan Gardner's Physics Notebook
< Mathematical Methods in the Physical Sciences‎ | Chapter 4
Revision as of 11:03, 19 April 2012 by Jgardner (talk | contribs) (Created page with "== Notes == If <math>z = f(x,y)</math>: * <math>{\partial z \over \partial x}</math> is the ''partial derivative of z with respect to x''. ** Note that <math>y</math> is held...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Notes

If <math>z = f(x,y)</math>:

  • <math>{\partial z \over \partial x}</math> is the partial derivative of z with respect to x.
    • Note that <math>y</math> is held constant, and we're seeing how <math>z</math> changes as we vary <math>x</math>
  • <math>{\partial ^2 z \over \partial\, x \partial y}</math> means <math>{\partial \over \partial x}{\partial z \over \partial y}</math>
  • <math>f_1 \equiv f_x \equiv z_x \equiv {\partial f \over \partial x} \equiv {\partial z \over \partial x}</math>
  • <math>f_{21} \equiv f_{yx} \equiv z_{yx} \equiv {\partial ^2 z \over \partial\, x \partial y} \equiv {\partial \over \partial x}{\partial z \over \partial y}</math>

If <math>z = f(x,y),\ x = g(r, \theta),\ y = h(r, \theta)</math>, then we can rewrite <math>z</math> in any combination of any variable.

  • <math>\left ( {\partial z \over \partial x} \right )_r</math> means take z, rewrite it in terms of x and r only, and then take the partial derivative of z with respect to x holding r constant.
  • Mathematicians don't like physicists because we re-use the same function name even though we are changing parameters. For instance, we say <math>f(x,y) = f(r, \theta)</math> which means we infer a lot about which <math>f</math> we are talking about.

<math>{\partial^2 f \over \partial x \, \partial y} = {\partial^2 f \over \partial y \, \partial x}</math> when both derivatives are continuous.

Problems

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

7'

8'

9'

10'

11'

12'

13'

14'

15'

16'

17'

18'

19'

20'

21'

22'

23'

24'