Mathematical Methods in the Physical Sciences/Chapter 4/Section 1
Contents
- 1 Notes
- 2 Problems
- 2.1 1
- 2.2 2
- 2.3 3
- 2.4 4
- 2.5 5
- 2.6 6
- 2.7 7
- 2.8 8
- 2.9 9
- 2.10 10
- 2.11 11
- 2.12 12
- 2.13 13
- 2.14 14
- 2.15 15
- 2.16 16
- 2.17 17
- 2.18 18
- 2.19 19
- 2.20 20
- 2.21 21
- 2.22 22
- 2.23 23
- 2.24 24
- 2.25 7'
- 2.26 8'
- 2.27 9'
- 2.28 10'
- 2.29 11'
- 2.30 12'
- 2.31 13'
- 2.32 14'
- 2.33 15'
- 2.34 16'
- 2.35 17'
- 2.36 18'
- 2.37 19'
- 2.38 20'
- 2.39 21'
- 2.40 22'
- 2.41 23'
- 2.42 24'
Notes
If <math>z = f(x,y)</math>:
- <math>{\partial z \over \partial x}</math> is the partial derivative of z with respect to x.
- Note that <math>y</math> is held constant, and we're seeing how <math>z</math> changes as we vary <math>x</math>
- <math>{\partial ^2 z \over \partial\, x \partial y}</math> means <math>{\partial \over \partial x}{\partial z \over \partial y}</math>
- <math>f_1 \equiv f_x \equiv z_x \equiv {\partial f \over \partial x} \equiv {\partial z \over \partial x}</math>
- <math>f_{21} \equiv f_{yx} \equiv z_{yx} \equiv {\partial ^2 z \over \partial\, x \partial y} \equiv {\partial \over \partial x}{\partial z \over \partial y}</math>
If <math>z = f(x,y),\ x = g(r, \theta),\ y = h(r, \theta)</math>, then we can rewrite <math>z</math> in any combination of any variable.
- <math>\left ( {\partial z \over \partial x} \right )_r</math> means take z, rewrite it in terms of x and r only, and then take the partial derivative of z with respect to x holding r constant.
- Mathematicians don't like physicists because we re-use the same function name even though we are changing parameters. For instance, we say <math>f(x,y) = f(r, \theta)</math> which means we infer a lot about which <math>f</math> we are talking about.
<math>{\partial^2 f \over \partial x \, \partial y} = {\partial^2 f \over \partial y \, \partial x}</math> when both derivatives are continuous.
Problems
1
<math>
\begin{align} {\partial u \over \partial x}
&= {\partial \over \partial x}\left ({x^2 \over x^2 + y^2} \right ) \\ &= \frac{(x^2 + y^2){\partial \over \partial x}x^2 - x^2{\partial \over \partial x}(x^2 + y^2)} {(x^2 + y^2)^2} &\qquad \left ( {u \over v} \right )' = {v u' - u v' \over v^2} \\ &= {(x^2 + y^2)2x - x^2{\partial \over \partial x}(x^2 + y^2) \over (x^2 + y^2)^2} \\ &= {(x^2 + y^2)2x - x^2\left({\partial \over \partial x}x^2 + {\partial \over \partial x}y^2\right) \over (x^2 + y^2)^2} \\ &= {(x^2 + y^2)2x - x^2\left(2x + {\partial \over \partial x}y^2\right) \over (x^2 + y^2)^2} \\ &= {(x^2 + y^2)2x - x^2(2x + 0) \over (x^2 + y^2)^2} \\ &= {(x^2 + y^2)2x - 2x^3 \over (x^2 + y^2)^2} \\ &= {2x^3 + 2xy^2 - 2x^3 \over (x^2 + y^2)^2} \\ &= {2xy^2 \over (x^2 + y^2)^2} \\
\end{align} </math>
<math> \begin{align} {\partial u \over \partial y}
&= {\partial \over \partial y}\left ({x^2 \over x^2 + y^2} \right ) \\ &= \frac{(x^2 + y^2){\partial \over \partial y}x^2 - x^2{\partial \over \partial y}(x^2 + y^2)} {(x^2 + y^2)^2} \\ &= \frac{(x^2 + y^2)0 - x^2{\partial \over \partial y}(x^2 + y^2)} {(x^2 + y^2)^2} \\ &= \frac{x^2{\partial \over \partial y}(x^2 + y^2)} {(x^2 + y^2)^2} \\ &= \frac{x^2\left ({\partial \over \partial y}x^2 + {\partial \over \partial y}y^2 \right )} {(x^2 + y^2)^2} \\ &= \frac{x^2\left (0 + {\partial \over \partial y}y^2 \right )} {(x^2 + y^2)^2} \\ &= \frac{x^2 (0 + 2y)} {(x^2 + y^2)^2} \\ &= \frac{2x^2y} {(x^2 + y^2)^2} \\
\end{align} </math>